本文摘要:电气设备是支撑变电站稳定运行的基础,本篇电气高级工程师论文涉及变电站电气设计变电站电气设计方案,涉及较多电学知识,为保证电力设计的合理性与安全性,除考虑电气设备的性能参数外,还应进行相关的稳定性检验,以保证变电站电气设备的安全、稳定运行,
电气设备是支撑变电站稳定运行的基础,本篇电气高级工程师论文涉及变电站电气设计变电站电气设计方案,涉及较多电学知识,为保证电力设计的合理性与安全性,除考虑电气设备的性能参数外,还应进行相关的稳定性检验,以保证变电站电气设备的安全、稳定运行,为提高变电站供电质量奠定坚实的基础。
《电气技术》(月刊)创刊于2000年,由中国科学技术协会主管、中国电工技术学会主办的中国电工行业的学术舆论媒体。杂志依托中国电工技术学会的行业优势,立足电气及自动化领域,跟踪国内外前沿技术,为制造商发布最新产品信息,为用户提供最佳的解决方案。杂志是一份集政策导向、技术与服务为一体的综合性电气期刊。内容主要涉及电工理论的研究与应用、电工新技术的研究与开发、电工装备与电器产品的设计制造和测试技术、电工材料与工艺、电工技术与自动化产品在各行业的应用。
摘 要:变电站是确保电网稳定运行的重要组成部分,在保证供电质量上发挥着不可替代的作用。为确保变电站充分发挥自身功能,应确定最佳的电气设计方案。本文对变电站电气设计方案进行探讨,以期为保证变电站的安全、稳定运行提供参考。
关键词:变电站;电气设计;探讨
中图分类号:TM63 文献标识码:A
随着社会的发展,人们的生产生活对电能的依赖程度越来越大,对供电质量要求越来越高,作为供电环节中重要的组成部分-变电站,确保其电气设计的科学与合理性具有重要的现实意义。
一、电气主接线设计
对变电站主接线进行设计时需要考虑主接线基本要求、接线方式的选择等内容。接下来逐一对其进行探讨。
1 电气主接线基本要求
所谓电气主接线主要指电厂或发电站在参考设计要求的基础上,用于连接一次设备的电路。实际设计过程中确定电气主接线形式时需要考虑变电站性能、电力系统、经济等诸多因素,一般要求在主接线可靠及灵活性的基础上,最大的减少投入。具体而言设计电气主接线时需充分考虑以下基本要求:一方面,花费最少的费用,确保变电站能够提供稳定、可靠的电能。另一方面,确保接线的灵活性及方便性,降低后期维护的难度,为变电站的安全运行奠定坚实的基础。
2 选择合理的主接线方式
设计主接线方式时应根据实际使用双母线、单母线及旁路,其中当线路中负荷比较大时,35kV~60kV出线多于8回、110kV~220kV 线路不少于5回时应设计使用双母线,而当负荷小且回路较少时应考虑使用单母线。当220kV出现超过4回,110kV出线超过6回时应考虑设计旁路。
设计220kV侧的接线时应综合考虑经济性、灵活性以及可靠性等内容,设计为双母线接线。原因在于从可靠性方面讲双母线可实现不同重要客户的引入,确保供电的稳定性。而且当1回线发生故障时断路器可实现故障母线的自动隔离,确保重要客户不间断的供电,具有更强的灵活性。尽管投入费用稍微高点,但接线比较方便,综合起来分析具有较好的经济性。
另外,对电力系统而言,110kV~ 500kV系统属于大电流接地系统,因此,变电站主变的220kV侧中性点应设计为中性点直接接地方式,而且设计无功补偿容量时按照主变量的37%进行设计。
二、短路电流的计算
变电站电气设计时短路电流的计算是极其重要的内容,设计不合理不仅会影响变电站的正常工作,甚至会烧毁变电站相关电气设备。因此,需要对短路电流进行准确的计算,一般情况下可借助曲线对任意时刻的短路电流进行计算,即根据统计获得的汽轮发电机或系统的相关参数,对阻抗条件不同状态下某一时刻短路电流进行计算,而后使用短路电流的平均值制作成运行曲线,在此基础上计算得出电抗以及某一时刻短路电流值。
三、电气设备的选择
电气设备是支撑变电站稳定运行的基础,因此,进行变电站电气设计时应将电气设备的设计当做重点,以充分发挥变电站工作潜能。变电站电气设备包括很多内容,如导线、220kV母线、220kV侧主变引线等,接下来对其进行探讨。
1 导线的选择
导线是连接变电站电气设备、承载电流的主要介质,一般包括各电压级绝缘子、出线、主变引下线、不同电压级汇流母线等。对导线进行设计时应确保所能承载的最高工作电压高于回路运行电压。导线中允许通过的最大电流,可采用以下方法进行计算:计算220kV主母线电流时应参考实际功率分配情况进行计算;旁路母线回路中的最大电流即为旁路回路的最大额定电流;主变引下线最大电流应为对应电压侧电流的1.5倍;出线单回线最大电流的值与最大负荷电流的值相等,双回线最大电流约为单回线最大负荷电流的1.2~2倍;分段回路电流为变压器额定电流的1.05K倍,其中K值在0.5~0.8范围内。
2 220kV母线的选择
设计220kV母线时不仅需要考虑其截面,而且还应进行热稳定性校验。设计220kV母线截面时利用公式Imax≤KImax进行确定,其中 K=0.94。对其进行热稳定性校验时需要利用导线短路持续时间计算出短路的发热量以及导线发热的最小导体截面,在参考《电力工程电气设计手册》加以确定。另外,还应进行动稳定性的校验,如果设计采用软母线,则可省略动稳定校验。
3 220kV侧主变引下线的选择
设计220kV侧主变引下线时室外通常使用钢芯铝绞线LGJ。经过计算得出其最大电流为316A。同时,考虑到母线不仅具有较大传输容量,而且距离较长设计截面时应依据经济电流密度加以确定。例如可考虑使用LGJ-300,当导线温度达到70℃时允许电流值为770A。另外,仍需对其进行热稳定性校验,以确保热稳定性满足设计目标要求。至于是否进行电晕校验,需要参考相关规范标准加以确定。例如,如果是220kV,LGJ-300的软导型号可省略电晕校验。
4 断路器的选择
在选择短路器时《电力工程电气设计手册》中有相关规定,即当不超过35kV时应在考虑经济性前提下,使用少油、真空的多油断路器。电压在 35~220kV时可考虑使用是、少油空气断路器。另外,考虑到后期维护的便捷性以及通过国家鉴定的产品可使用SW6-220/1200型断路器。
5 隔离开关的选择
市场上隔离开关类型比较多,依据安装地点有屋内与屋外之分,依据绝缘支柱数目可被分为单住式、双柱式。隔离开关会给配电装置占地面积产生直接影响,因此,确定隔离开关时应在综合考虑实际的基础,选择经济性较高的隔离开关。
6 电压互感器的选择
互感器由电压互感、电流互感之分,通过向测量仪表电压、电流线圈以及继电器供电,以判断电气设备的运行状态。在选择电压互感器时可依据一次、二次回路电压进行选择。其中对一次回路电压而言,为确保互感器在预定的安全级下正常工作,其一次绕组能承受的电网电压应在0.9~1.1Ve范围内。对二次回路电压进行设计时,二次侧额定电压的确定可参考表1内容进行选择。
总之,电压互感器设计时应综合考虑实际情况以及安装地点,当准确级、容量满足设计目标时通常可使用电容式电压互感器。
7 电流互感器的选择
调查发现,电力系统中应用率比较高的电流互感器为电磁式电流互感器,而且《电力工程电气设计手册》明确规定了电流互感器的安装,要求断路器的回路中均应安装电流互感器。设计电力互感器时应根据不同线路设计合理的电流互感器,例如在主变引下线可使用LCW2-200W电流互感器。
8 穿墙套管及绝缘子的选择
设计穿墙套管及绝缘子需考虑型式、电压以及动热稳定校验等方面的内容。首先,选择型式时应认真分析安装环境及地点,以选择合适的产品型式。一般情况下,屋内倒装时可考虑使用悬挂式绝缘子,屋外使用联合胶装多棱式绝缘子;其次,确定额定电压时应按照按照电气规范标准进行;最后,进行稳定性校验时,应注意:校验穿墙套管时其热稳定性能力应不小于短路电流经过产生的热效应。而母线型穿墙套管可不进行热稳定性校验。另外,绝缘子与套管均应检验动稳定性。处于相同平面中的三相导体出现短路现象时,支持绝缘子或套管受到的力为此绝缘子相邻夸导体上点动力的平均值。其中支持绝缘子抗弯破坏强度Fde与作用在绝缘子高度H相关,而电动力Fmax的作用位置为导线截面中心线上,两者关系应满足H1/HFmax≤0.6Fde,其中0.6为裕度系数。
转载请注明来自发表学术论文网:http://www.fbxslw.com/jzlw/8545.html