本文摘要:由于酶具有天然、安全和对环境友好等特点,可在皮革行业中替代化学产品。然而,酶的应用成本仍然很高,并且酶在皮革行业中的应用技术还需要更深入研究。在这篇生物技术论文中,展示了微生物酶的筛选分离过程、微生物的培养和酶的特性,对以后的研究会有所帮
由于酶具有天然、安全和对环境友好等特点,可在皮革行业中替代化学产品。然而,酶的应用成本仍然很高,并且酶在皮革行业中的应用技术还需要更深入研究。在这篇生物技术论文中,展示了微生物酶的筛选分离过程、微生物的培养和酶的特性,对以后的研究会有所帮助。《皮革与化工》是中国科技核心期刊。入编《中国期刊网》、《中国学术期刊(光盘版)》,为《中文科技期刊数据库》收录期刊,《万方数据-数字化期刊群》全文上网期刊,《美国化学文摘(CA)》摘录期刊。是刊登制革领域里皮革、合成革及其化工材料的专业性技术期刊;重点报道国内外制革工艺及皮革化工方面的新技术、新工艺、新产品,并密切关注国内外制革技术发展动态。
1生物技术
生物技术就是运用生物处理知识和生物体的特性来解决问题和制造有用的产品。能够使用生物制剂(有机物、细胞、细胞器、分子)来获得所需要的产品或者提供服务的知识称为生物技术,包括基础科学(分子生物学、微生物学、细胞生物学、遗传性、基因组学、胚胎学),应用科学(免疫学、化学和生物化学技术)和其它技术(计算机技术、机器人技术和过程控制技术)。生物技术影响不同的生产领域,提供了新的就业机会,提供了植物抗病,生产生物降解塑料、生物燃料,对环境少污染的工农业生产和环境生物治理的方法。目前,在工业上使用生物技术方法(生物催化和生物转化)有所增加。经济合作与发展组织研究也表明生物技术在工业上的应用增加。在案例研究中,70%以上使用了酶法工艺,从而使费用降低了9%~90%,并且节省了自然资源。
2酶
酶是有机物质,一般称为催化多种化学反应的生物催化剂的蛋白质,酶广泛应用于洗涤剂、食品、医药、精细化工等行业。它们是制得重视的物质,其显著的高效性和催化能力,明显优于合成催化剂。高特异性的酶取决于它的尺寸和产生与底物亲和区的三维构象。从巴斯德以来的研究表明,尽管和其他物质同样受到自然法则的支配,酶在一些重要方面却不同于普通化学催化剂,具体包括如下几个方面:更快的反应速度,温和的反应条件,特异性强和可调控能力。几乎所有的细胞代谢反应都是在酶的催化下进行的,这些反应是所有生物体代谢的基础,为工业生物催化更高效和经济提供了极大可能。现有的酶种类估计有6000~7000种,其中3000种酶具有生物学功能,但是应用于工业中的酶仅有130种左右,或为游离酶,或作为细胞的一部分。由于微生物酶比同种来自植物或动物的酶更稳定,因此大部分工业用酶源于微生物。至少有3000种酶是由嗜温微生物分离得到的。酶的分类如表1所示。
2.1酶的应用
酶的应用与全球市场有明显的关联,可以分为工业用酶和医用酶\分析酶和科技用酶。在生物科技领域内,尤其是工业用酶作为最主要的应用酶。过去十年,与科学和技术密切相关的酶的应用变得包罗万象很难对它准确定义。然而,如图2所示,生物技术无疑包括微生物学、生物化学、基因工程以及材料的化学及生物化学处理过程。在这些使用的制剂中,酶常常用来改善工艺,并且使新原料得以使用,从而提高它们的物理和化学特性。酶的应用非常广泛,在食品、农业、造纸、皮革和纺织工业等行业的应用显著节约了成本。有作者认为,酶的应用是工业可持续发展的重要组成部分。生物治疗技术需要使用生物制剂(例如:活的微生物或酶)对被环境中污染物的污染进行去除、转化或去毒,通过自然过程将污染物转化为毒性较低的物质形式。2.1.1酶在皮革清洁化生产中的应用生物技术在制革业的中应用已经有很多年了,但是大部分酶制剂在这一领域没有足够的特异性。
目前,生物方法在浸水、脱毛、软化和脱脂过程中取得了一定的成功。在浸水、脱毛或浸灰过程中用酶取代化学品和电力这一小“投资”,能够相当大的节约能源和减少二氧化碳的排放量。也选用生物技术处理废水和固体蛋白废物。在皮革生产过程中的浪费高达50%。最好的清理方法是恢复具有商业用途的蛋白质的可溶性。酶可降解未鞣制的和鞣制的皮革固体废弃物。
酶在原料皮加工过程的应用如下:(1)蛋白酶蛋白酶是水解蛋白质和肽的一类酶。碱性蛋白酶最初作为洗涤剂的添加剂,是具有生理和商业价值的一类酶。在蛋白质的水解和裂解中扮演着特殊的角色。芽孢杆菌是碱性蛋白酶的主要来源,广泛应用于各行业。碱性蛋白酶的生产一般采用液态培养。每种微生物在其特定的条件下有酶的最大产值。碱性蛋白酶能够通过催化水解破坏蛋白质的肽键和清除清蛋白和球蛋白等非纤维蛋白。目前已尝试设计一种不浸酸环保型植物鞣法,使用蛋白水解酶来提高植物丹宁的利用率。这一方法使丹宁的利用率超过95%,比传统的植物鞣法提高了10%。酸性蛋白酶用于帮助植物鞣剂扩散,达到更好的利用。在皮革的抗张强度和延伸性方面,传统生产和酶法生产没有明显的区别。(2)角蛋白酶角蛋白是生皮、头发、羊毛、指甲和羽毛的主要结构蛋白。在表皮和骨骼组织蛋白质形成刚性纤维。羽毛中包含90%以上的角蛋白。角蛋白酶在生物技术工程中有很多应用:可用于原料皮脱毛,洗涤剂和肥料的生产,动物饲料和化妆品,工业废弃物的降解和生产可生物降解的薄膜。动物和植物不能有效的水解角蛋白。角蛋白是一种非常稳定蛋白质,但是某些真菌、细菌和放线菌在细胞内外产生的角蛋白酶可催化其水解。有关分析表明,角蛋白酶可作用许多可溶性和不可溶性的蛋白底物。(3)脂肪酶目前大部分脂肪酶来源于真菌和酵母菌,但是细菌脂肪酶和来自于其他微生物的脂肪酶在高温和恶劣条件下更为稳定而量在增长。主要来源于微生物的脂肪酶催化水解甘油三酸酯为游离脂肪酸和甘油。研究了用黑曲霉生产脂肪酶,并且测得了细胞外脂肪酶的特性(最佳pH和温度,稳定性和去除橄榄油的能力)。脂肪酶可溶于水并且在消化代谢中扮演着重要的角色。在皮革生产中,脂肪酶作用于脂肪、肉的脂类、油脂和皮腺产生的油。脂肪酶用于脱脂和脱毛过程。脂肪酶与表面活性剂使用脱脂效果更好。当脂肪酶和蛋白酶结合用于复鞣、去除油脂和污垢,皮革可能获得更为均匀和鲜艳的颜色。使用脂肪酶能够减少皮本身油脂脂肪带来的色花,减少皱纹和其它类型的变色。
(4)淀粉酶淀粉酶可使淀粉分子降解并且在自然界中分布很广。淀粉酶在工业上有很重要的生物技术应用,比如在纺织、纸浆和纸、皮革、洗涤剂、啤酒、面包、婴幼儿谷类食品、饲料、化工和制药业以及淀粉的液化和糖化等方面的应用。这些酶来源广泛,可从植物、动物和微生物获得,通常微生物酶的工业需求最大。大部分微生物淀粉酶可作为商业用途和水解淀粉。在皮革生产中,淀粉酶常常用来打开皮革的纤维结构。(5)胶原酶胶原酶来源广泛,是一种金属蛋白酶。胶原酶的动力学模型取决于它们的来源。在-Gly-Pro-X-Gly-Pro-X序列中,细菌胶原酶优先打开Gly-X键(X是一种天然氨基酸)。鞣制后的胶原蛋白(用鞣剂交联)有抗胶原酶的作用;这种酶不能水解铬鞣皮革,但能打开皮革的纤维结构。已有研究表明胶原酶来源于几种微生物,但对降解和水解主要由胶原蛋白组成的皮革很困难。细菌胶原酶应用于皮革染色。使用这种酶能够获得更柔软的皮革,并且保持变皮革的强度不变。表2总结了一些酶在皮革生产中的应用。2.1.2在皮革生产中酶的活性评估在皮革生产过程中,除了掌握不同特性的酶在皮革生产多方面的应用,定量评估酶对原皮的作用也非常重要。最新文献探讨了用光学显微镜或/和电子显微镜对蛋白质、原纤维蛋白(葡萄胺多糖和蛋白聚糖)、羟脯氨酸的定量测定,以及评估粒面质量。酶促反应的效果决定成品革的力学强度。葡萄胺多糖又称粘多糖,是由糖醛酸和六亚甲基四胺(葡萄糖胺或半乳糖胺)聚合而成的线性高分子碳水化合物。最常见的葡萄糖胺是透明质酸。
硫酸皮肤素在准备工段被部分去除,它与打开纤维结构密切相关。有效去除硫酸皮肤素有利于打开纤维结构便于化学品渗透,并提高得革率;但是过量的去除硫酸皮肤素会导致皮革松面和强度差。蛋白多糖是一种结合在葡萄糖胺上的细胞外蛋白。主要的蛋白多糖是核心蛋白聚糖,由单链的硫酸皮肤素和多肽链组成。有效的去除蛋白多糖对提高皮革的柔软性和柔韧性非常重要。去除纤维间质如蛋白多糖和氨基多糖是传统制革浸灰和软化过程的前提。用蛋白酶软化皮革有利于去除纤维间质。一些学者研制了一套方法来判定浸灰和软化过程中这些蛋白质的去除情况。这些方法包括根据标准浓度曲线,通过计算硫酸软骨素的浓度来确定葡萄糖胺的浓度,由粘蛋白的量确定蛋白多糖的浓度。羟脯氨酸是胶原中特有的一种氨基酸,在其他蛋白质中不曾发现。在胶原结构中最常见的氨基酸有羟脯氨酸(11.28%),脯氨酸(11.77%),甘氨酸(33.43%),丙氨酸(11.97%)和精氨酸(5.04%)。哺乳动物的皮中每100g胶原中含有13.45g羟脯氨酸,然而鱼皮中每100g胶原中含有7~9g羟脯氨酸。基于此,在皮革生产过程中,根据羟脯氨酸的含量用来确定原料皮的胶原含量和生产过程中不希望释放的胶原量。除了分析纤维间质,还可通过皮革的抗张强度、延伸率和撕裂强度来评估酶在皮革生产中各工序的应用效果。
2.2微生物酶的分离和筛选
搜索一种新的酶始于自然界中的微生物。研究者从热带森林到冰川地区收集不同气候条件下的土壤样品并对其进行检测。酶的获取途径非常广泛。大部分酶主要来源于动物、植物和微生物。大部分工业用酶来自于微生物。微生物酶比来自于动植物的酶在数量上更有优势。这些优势主要表现于:a.微生物比动物和植物生长更快。b.酶仅仅是动植物体很微小的一部分。因此,酶的大规模生产需要大片的土地和大量的动物。这种限制使得动植物酶非常昂贵。微生物酶不受这些方面的约束,想生产多少就能生产多少。c.微生物酶比动植物酶更稳定。d.由于微生物在自然界中种类的多样性,因此最大的优势就是能够生产各种类型的酶。
e.基于对微生物基因基础的研究和了解从而控制其生理功能,可以人为操纵微生物产生某些代谢产物,包括酶。在酶的生产中,第一步就是分离和筛选微生物,也就是分离特定的菌株从而获得所需要的酶,如图3所示。为了达到要求,需要对不同的菌株进行精细选择和测试以鉴定这些菌株,从而获得所需特性的菌株。目前,已经开始研究几种新型酶。外来微生物(比如极端微生物)是酶的重要来源。生物体以pH值的不同而分布不同。众所周知微生物接近中性的pH条件下繁殖。当偏离接近中性条件时,微生物的数量减少。标准做法就是将许多微生物置于大量含有培养基和琼脂平板上培养,如图4所示。分离微生物的典型方法就是使用后续金属保护层,筛选理想特性的微生物。然后,微生物在特种媒介中生长,使用合适的基质如脱脂牛奶或酪蛋白、淀粉、三丁酸甘油酯或黄油来测定蛋白的水解和脂肪的分解活力。选择那些分离出来的具有很强活力的菌株,然后用恰当的方法保存备用。生产应用于皮革生产用酶(包括蛋白酶,角蛋白酶,胶原酶)的微生物,可根据各种微生物栖息地如制革厂的污泥、废弃物和污水中分离出来。Ogino等分离出来的76种微生物能够在中性pH条件下降解制革废水,23种微生物能在碱性条件下降解制革废弃物。文献中通常使用含有琼脂和蛋白质的培养基来获得蛋白水解酶。最常用的蛋白有酪蛋白,脱脂牛奶和磨碎的羽毛。蛋白水解活性检测是通过底物消耗在周围出现一个透明环,就表示有蛋白酶产生。
2.3酶的生产和微生物的营养大部分酶通过水中培养获得,但有些酶通过半固体培养基生产。
2.3.1半固体培养基这种类型的培养基通常用于真菌微生物培养,在低湿度和通风性良好的条件下能够获得较高的酶产量。通过空气循环的方式将温度维持在30℃左右。生产周期一般为30~40h,但有时会持续长达7d。最佳产量取决于抽样和对酶产量的评估。2.3.2水基培养大多数酶的生产是在生物反应器中通过水基培养来实现的。该培养基包含足够的碳源、氮源、金属和微量元素等微生物生长所必须的营养物。然而,在某些情况下适宜微生物生长的培养基并不有利于所需酶的生产。温度和pH值必须适合每种生物体。酶的生长、酶的生产以及酶的稳定性所需的温度和pH值,每种酶都不尽相同。培养温度通常由三个因素决定。如果微生物生产酶是需氧的,则氧气需氧量较大,因此水基培养中需要通气和搅拌。微生物必须在适宜条件下培养才能够提高酶的产量。提高蛋白酶产量和有助于细胞生长的培养条件明显不同。在碱性蛋白酶的工业化生产中,需要高浓度的复杂碳水化合物、蛋白质和其他培养基组分。为了开发一种经济又切实可行的技术,研究者在以下几个方面展开了研究:(a)提高碱性蛋白酶的利用率;(b)最佳生产条件;(c)使用廉价的培养基。在大多数生物体中,有机和无机氮源会代谢产生氨基酸、核酸、蛋白质和其他细胞组分。
碱性蛋白酶中氮含量高达15.6%,并且它们的生产取决于培养基中碳源和氮源的供应。虽然复杂的氮源通常用于碱性蛋白酶的生产,不同的生物体对氮源的需求量也不同。有研究者发现,当糖(如乳糖、麦芽糖、蔗糖和果糖)用于微生物的培养时,碱性蛋白酶的产量会提高。各种有机酸(如醋酸、乙酸甲酯、柠檬酸或柠檬酸钠)有利于碱性蛋白酶的生产。在某些情况下,酶的生产需要二价金属离子(钙、钴、硼、铁、镁、锰)。在大多数研究中,钾的来源主要是磷酸钾。磷酸盐用作培养基的缓冲剂,但是过量会抑制细胞的生长和酶的产生。总之,微生物和其他生物一样需要营养物质。以下是影响微生物营养最重要的因素。真菌和大多数细菌均为化能自养型微生物,通过适宜底物的氧化反应来获取能量。无机营养微生物氧化无机化合物来获得营养,而有机营养菌氧化有机化合物获得营养。第一组中包括氧化硫产生硫酸的细菌。第二组包括真菌和相当数量的细菌。2.3.3碳源对于自养型微生物来说,主要碳源是二氧化碳和碳酸氢钠,能够以此合成机体所需要的全部有机组分。大多数细菌为异养型,需要有机碳源;有机碳源一般有碳水化合物、氨基酸、脂类、醇类和淀粉及纤维素类聚合物。实际上,一些微生物能够利用一些天然有机物和人工合成的化合物。
微生物的多用途性非常重要,使微生物的应用更广泛地向有利的方向转变。2.3.4氮源微生物对氮的需求分为三类。一些细菌可直接吸收大气中的氮并转化为有机氮。许多真菌和细菌几乎完全使用无机氮化合物特别是铵盐,偶尔也使用硝酸盐。真菌和一些细菌需要以各种氨基酸为代表的有机氮源的氮。通常,蛋白质的水解或和氨基酸能够促进大多数异养微生物的生长。2.3.5重要的无机离子除了碳和氮,微生物还需要大量无机化合物中的其他元素。一些称为大量元素,机体需求量很大,另外一些称为微量元素,机体需求量很少。大量元素中的磷一般以磷酸盐形式存在,对机体的能量代谢和核酸的合成非常重要;硫是合成氨基酸(比如半胱氨酸)和维生素(比如维生素H和维生素B1)所必需的;钾作为酶的激活剂和渗透压的调节剂;钾是孢子形成中重要的胞外酶的激活剂;铁是合成某种细胞色素和颜料所必需的。由于微量元素的研究很困难,所以微量元素的作用并不确切。然而,在一些特例中证实铜、钴、锌、猛、钠、硼以及其它微量元素是微生物生长所必需的元素。2.3.6生长因子生长因子是特殊生物体不可缺少的,且其自身不能合成的有机化合物。生长因子必须在培养基中才能促使有机体的生长。许多生长因子是维生素,尤其是维生素B类,也有些生长因子是氨基酸和脂肪酸。2.3.7水水不是营养物质,但它对微生物生长是必须的。因为大部分营养物质是在溶液中通过细胞质的膜吸收的。由于水的比热容高和热调节性好,水对调节渗透压有重要作用。3.3.8大气中的氧和水一样,大气中的氧也不是营养物。微生物根据周围游离氧的数目进行不同的生命活动;好氧菌需要游离氧,但是有些好氧菌是微需氧的,对氧的需求量很少,不能忍受正常大气中的氧。相反,厌氧型微生物在游离氧条件下会很快死亡,然而兼性厌氧型微生物能同时在有氧和无氧条件下存活。
2.4酶动力学
酶动力学是酶学的一部分,主要研究酶促反应速率及其影响因素。酶动力学研究主要是评估酶的产量和单位时间内底物的消耗量。酶促反应可用方程(1)来表示,可分为两个反应,一个是生成酶和底物的复合物反应,另一个是进而生成产物和酶的反应。E+S圮ES圮P+EE、S、ES和P分别代表酶、底物、酶和底物的复合物和产物。根据这个模型,当底物浓度足够高时,酶全部转换为酶和底物复合物的形式,第二步会受到抑制,并且随着底物浓度的增加,反应速度不变。酶促反应速度取决于酶浓度和底物浓度。理论上,在催化、合成和裂解反应过程中同一种酶可反复利用多次。在实践中却受到了很多限制。酶是一种复杂而敏感的生物分子,酶所处环境的温度、酸碱性、微量金属离子或某些抑制剂都会影响酶活力。一些影响酶催化活力的因素如下:(1)pH值酶处于最佳pH值时,酶分子上的电荷分布和酶的催化位点都有助于酶的催化。(2)温度大多数酶都有其最适温度;最适温度取决于分离出酶的微生物。
一些微生物的最适温度接近室温,这些微生物分离出来的酶在30~40℃活性最大。温度太低,分子移动减慢导致反应速率下降;温度太高,分子移动速度非常快,酶很难维持其空间结构并发生变性,从而导致酶失活。温度升高,反应速度加快,当达到最适温度后,反应速度减慢。(3)变性维持蛋白质功能的结构遭到破坏称为蛋白质变性。不仅仅高温导致蛋白质变性,其他能够破坏化学键的环境因素也会导致蛋白质变性。此外,极端pH值会使官能团质子化或去质子化,使酶活力丧失。洗涤剂和非极性溶剂能够改变蛋白质的结合和相互作用,进而引发变性。在大多情况下,变性是一个不可逆过程。(4)酶的抑制作用许多物质能够与酶可逆结合而改变其活力。众所周知,能降低酶活力的是抑制剂。1)抑制剂不同抑制剂的作用机理不同。一些酶抑制剂结构与酶相似,与酶不反应或反应很慢。这些类型的抑制剂可分为两类:①竞争性抑制剂这类抑制剂能竞相争夺酶分子上的活性结合位点,并且降低用于结合底物的游离酶浓度。当底物浓度升高,也就是游离酶抑制剂所占比例下降,会引发抑制活动的下降。这种抑制剂通常和底物与酶的特殊活性位点结合类似。然而,它和酶与底物结合大不同,它不发生反应。②非竞争性抑制剂非竞争性抑制剂能够改变酶分子上的活性位点,使酶丧失催化活性。非竞争性抑制剂和底物不一样,提高底物浓度并不能使抑制剂活性降低。2)变性假如一种抑制剂与酶不可逆结合,称之为灭活剂/变性剂。
2.5酶抑制剂在原皮保藏和皮革加工中的应用
浴液中盐和其他化学品的使用会干扰酶的活性,因此应在工业过程中避免此类损失。表3展示了不同化学品对酶活性的影响,由Dettmer等报导。硫酸钠和表面活性剂对部分酶产生抑制作用。EDTA、脂肪醇、纯碱和氢氧化钙对酶的活性的影响没有太大的差异。Dettmer等研究表明,皮革生产过程中传统脱毛与酶脱毛过程相比,酶脱毛技术是降低生产污水污染负荷的理想选择。酶解过程能够降低COD、BOD、氮和硫化物的水平并且能够大幅度的缩短加工时间,从之前的20h缩短到6h,但要准确把握酶脱毛的时间,避免对皮革造成损害。一些学者指出酶脱毛工艺能获得与传统脱毛工艺品质相同的皮革。这两个工艺的皮革产品的抗张强度、撕裂强度、铬含量与收缩温度都基本相同。Dettmer等通过定量测定去除纤维间质来评估酶脱毛过程中酶的效率,此外,通过测定废水中羟脯氨酸的含量评估酶对胶原蛋白的破坏作用。有人发现在脱毛过程中酶残余的活性可回收再利用。
3结论和展望
在清洁技术的开发和应用方面皮革加工仍面临着挑战。从商业途径获得的和新近分离出来的酶的特性都很重要,由于这些特性阐明了酶的性质,可用于未来的学术研究和工业应用。通过抑制剂、最适pH值和温度对酶活性的影响的相关专业知识的应用,得到的数据能够提升原料皮和皮革加工过程对酶的利用。通过分析废水中COD、BOD、氮和硫化物的含量,证实了酶用于脱毛过程大幅度降低了废水的污染负荷。酶促过程有助于缩短加工时间,从之前的20h缩短到6h,但是时间控制不当会对皮革造成损害。酶对皮革粒面和纤维间质的作用效果可通过测定纤维间质、羟脯氨酸含量和测试皮革的抗张强度来评估。总之,酶在原皮保藏和皮革加工中的应用能是一项非常有前途的技术,能够把对环境的影响降到最低,且能提高化学产品的利用率。
转载请注明来自发表学术论文网:http://www.fbxslw.com/jjlw/12240.html